Canonical height functions for affine plane automorphisms

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Canonical Height Functions on the Affine Plane Associated with Polynomial Automorphisms

Let f : A → A be a polynomial automorphism of dynamical degree δ ≥ 2 over a number field K. (This is equivalent to say that f is a polynomial automorphism that is not triangularizable.) Then we construct canonical height functions defined on A(K) associated with f . These functions satisfy the Northcott finiteness property, and an Kvalued point on A(K) is f -periodic if and only if its height i...

متن کامل

Canonical Height Functions Defined on the Affine Plane Associated with Regular Polynomial Automorphisms

Let f : A → A be a regular polynomial automorphism (e.g., a Hénon map) defined over a number field K. We construct canonical height functions defined on A(K) associated with f . These functions satisfy the Northcott finiteness property, and an Kvalued point on A(K) is f -periodic if and only if its height is zero. As an application of canonical height functions, we give a refined estimate on th...

متن کامل

Local and global canonical height functions for affine space regular automorphisms

Let f : A → A be a regular polynomial automorphism defined over a number field K . For each place v of K , we construct the v-adic Green functions Gf,v and Gf−1,v (i.e., the v-adic canonical height functions) for f and f . Next we introduce for f the notion of good reduction at v, and using this notion, we show that the sum of v-adic Green functions over all v gives rise to a canonical height f...

متن کامل

l)-DIMENSIONAL HEIGHT-HEIGHT CORRELATION FUNCTIONS FOR SELF-AFFINE FRACTAL MORPHOLOGIES

We study analytic forms in Fourier space of one-dimensional heightheight correlation functions for self-affine rough surfaces. Comparisons with complex systems suggest three alternative models. However, only the model Cl(k) m (1 + a]#-(r+2H) permits analytic calculation of important surface roughness quantities (i.e. surface width) for roughness exponents in range 0 5 HI 1. Furthermore, the imp...

متن کامل

Affine Differential Invariants of Functions on the Plane

A differential invariant is a function defined on the jet space of functions that remains the same under a group action. It is an important concept to solve the equivalence problem. This paper presents an effective method to derive a special type of affine differential invariants. Given some functions defined on the plane and an affine group acting on the plane, there are induced actions of the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematische Annalen

سال: 2006

ISSN: 0025-5831,1432-1807

DOI: 10.1007/s00208-006-0750-y